AN EVALUATION OF EFFECTS OF QUALITY FUNCTION DEPLOYMENT ON ORGANIZATION: A CASE STUDY OF COAST BOTTLERS LTD MOMBASA

TIMOTHY KIPLAGAT KOSGEI

A RESEARCH PROJECT SUBMITTED TO THE SCHOOL OF MANAGEMENT AND LEADERSHIP IN PARTIAL FULFILLMENT FOR THE AWARD OF THE DEGREE OF MANAGEMENT AND LEADERSHIP OF THE MANAGEMENT UNIVERSITY OF AFRICA

NOVEMBER, 2016
DECLARATION

Declaration by Student:

This research Project is my original work and has not been presented for the award of a degree in any other University or Institution of higher learning for academics or otherwise.

Name………………………………..Signature………………..Date……………………

TIMOTHY KIPLAGAT KOSGEI

Declaration by Supervisor:

This Project has been submitted for examination with my approval as the appointed University Supervisor.

Signature: -- Date: -------------------------

Dr. Paul Machoka
DEDICATION

I dedicate this project to my whole family who stood by me during the entire course. Their support both morally and spiritually is invaluable and I shall remain indebted.
ACKNOWLEDGEMENT

I thank my almighty God for His mercy and grace He has enabled me to complete my course study as well as the research report. Much thanks goes to the Mombasa Coastal Bottlers Ltd for having given consent to carry out my research study. I salute the management and staffs of this organization for their hospitality. My grateful thanks are not less than to acknowledge the greater effort and benevolent guidance that I have received from my project supervisor, Dr. Paul Machoka of MUA. He has so been inspiring to me, and also without forgetting the lectures of MUA for their commitment in imparting knowledge in me in the most crucial business management and leadership skills. Finally, am grateful to my family and friends for their material and immaterial support that they have been able to help me. May God bless you.
ABSTRACT

The purpose of the study was to evaluate the effects of quality function deployment on organization. The specific objectives were to determine the effects of cost, quality, lead time and service quality on Quality Function Deployment on Organization. The researcher used descriptive research design. The design was preferred because it was concerned with answering questions such as who, what, which, how, when and how much. The study covered a population of 150 persons in the organization and used the researcher used stratified sampling approach to cover the total population and the sample 75 respondents was selected randomly. Data was collected from both primary and secondary sources whereby questionnaires and literature review were done respectively so as to get detailed information. From the study findings 85% of the respondents were of the opinions that cost affects quality function deployment while 15% were against, 88% affirmed that quality affects on quality function deployment while 12% of the respondents were against, majority of the respondents at 80% agreed that lead time affects quality function deployment while 20% of the respondents disagreed and Majority of the respondents at 83% were of the views that customer service affects quality function deployment while 17% of the respondents were against. Therefore the study recommends that cost should have a basic objective of fulfilling the performance of quality function deployment in terms of the profit and losses incurred by the company being made public which is quite different from costing for internal decision making, trained man power should be employed so to ensure that they produce the right quality at all times, quality function deployment to be effective it must have the lead time of its delivery and performance of large quality function deployment organizations of its goods to customers and customer satisfaction should be achieved by simply raising self-awareness of the customer. In a typical product/service failure case, increased self awareness of customers could increase their satisfaction with the service provider, as greater self awareness would help customers accept greater responsibility for the failure. The reverse would happen if the product or service achieves success; in this case, if their level of self-awareness is increased, then a decrease in satisfaction with the service provider occurs as the customers are more likely to take credit for the success of large quality function deployment organizations.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>OPERATIONAL DEFINITION OF TERMS</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER ONE

INTRODUCTION OF THE STUDY

1.0 Introduction | 1
1.2 Statement of the Problem | 3
1.3 Objectives of the Study | 4
1.4 Research Questions | 4
1.5 Significance of the Study | 5
1.7 Scope of the Study | 5
1.8 Summary | 6

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction | 7
2.2 Theoretical Review | 7
2.3 Empirical Review | 8
2.4 Conceptual Framework | 24
2.5 Research Gaps | 25

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction | 28
3.2 Research Design | 28
3.3 Target Population | 28
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Target Population</td>
<td>28</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Sample Size</td>
<td>29</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Response Rate</td>
<td>31</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Gender Response</td>
<td>32</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Ages Brackets</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Highest Level of Education</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Work Experience</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Effects of Cost</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Rating of the Effects of Cost</td>
<td>37</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Effects of Quality</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Rating of the Effects of Quality</td>
<td>39</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Effects of Lead Time</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Rating of the Effects of Lead Time</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Effects of Customer Service</td>
<td>42</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Rating of the Effects of Customer Service</td>
<td>43</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CAM</td>
<td>Computer Aided Manufacturing</td>
<td></td>
</tr>
<tr>
<td>EDI</td>
<td>Electronic Data Interchange</td>
<td></td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>Material Requirements Planning</td>
<td></td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
<td></td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
<td></td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
<td></td>
</tr>
</tbody>
</table>
OPERATIONAL DEFINITION OF TERMS

Costs

This cost has a basic objective of fulfilling the inventory control techniques in the hospitality industry in terms of the profit and losses incurred by the hospitality industry being made public which is quite different from costing for internal decision making.

Customer Service

Customer service is the act of taking care of the customer's needs by providing and delivering professional, helpful, high quality service and assistance before, during, and after the customer's requirements are met.

Lead Time

The time taken to get through the factory is greatly reduced thus enabling factories to engage in time based competition using speed.

Quality

This is an experience of the customer. Product quality perception comes from your design specifications and manufacture standards achieved. Service quality perception comes from your service process design and the customer contact impressions.
CHAPTER ONE
INTRODUCTION OF THE STUDY

1.0 Introduction
This study covered investigation on the role of third-party logistics providers in performance of large manufacturing firms in Coast Bottlers Ltd Mombasa. The study consist of eight sections, that is the background of the study, statement of the problem, objectives of the study, research questions and the significance of the study as well as the scope of the study.

1.1 Background of the Study
Quality is viewed as an essential means of competing in today's rapidly changing global marketplace. Total quality management (TQM), a philosophy or approach to management, has emerged as an important aspect of overall quality improvement programs in many organizations. It is both a comprehensive managerial philosophy as well as a collection of tools and approaches for its implementation (Evans, 2006).

Focusing on listening to the voice of the customer, quality function deployment (QFD) is an essential tool for implementing TQM. QFD deploys the voice of the customer throughout the R&D, engineering, and manufacturing stages of product development. It is a powerful system for quality improvement and product development which assures that quality is built into new products and services.

Various techniques have been identified and studied with an aim to improving the QFD methodology. One emerging trend involves the use of artificial intelligence (AI) and related techniques. For example, Reich (2006), discussed the benefits that can bring to QFD. To avoid the need to input a large amount of data and the necessity of estimating values on a rather subjective basis, the author suggested a machine learning approach. However, the QFD process involves various inputs in the form of linguistic data, e.g., human perception, judgment, and evaluation on importance of customer requirements or relationship strength, which are usually subjective and uncertain. In traditional QFD most of these input variables are assumed to be precise and are treated as numerical data. Linguistic data, however, is inherently vague and ambiguity. They can be treated to approximate exactness with the help of fuzzy set theory.
Dean (2003), investigated how QFD analysis can be performed when input variables are treated as linguistic variables with values expressed as fuzzy numbers. The author introduced a method for performing routine design by using information content and fuzzy QFD based on the concept of linguistic variable. Dean (2003), presented an integrated approach that allows a design team to mathematically consider tradeoffs among various customer attributes as well as the inherent fuzziness in the system by combining multi-attribute value theory with fuzzy linear regression and fuzzy optimization theory.

QFD converts consumers' demands into "quality characteristics." It develops a design quality for finished products by systematically deploying the relationships between the demands and the quality characteristics, starting with the quality of each functional component and extending the deployment to the quality of each part and process. Four key documents are commonly used in carrying out QFD, namely: the overall customer requirement planning matrix, the final product characteristic development matrix, the process plan and quality control charts, and the operating instructions (Sullivan, 2006).

1.1.1 Profile of Coast Bottlers Ltd Mombasa

Coast Bottlers Ltd Mombasa was founded in 1948 by the Coca-Cola Company in November 1995; Coca-Cola South African Bottling Company (Coca-Cola Sacco) partnership with centum acquired Nairobi Bottlers from The Coca-Cola Company in December 2004 the business consolidated its operations into one Manufacturing facility in Embakasi Nairobi and closed the manufacturing facility in Nakuru and Machakos Ownership. Coca-Cola has 72% shareholding and centum has 28% shareholding in Coast Bottlers Ltd Mombasa. Other Data; there are 6 Bottling Companies in Kenya; Nairobi Bottlers, Kisii Bottlers, Equator Bottlers, Coastal Bottlers and Rift Valley Bottlers. Coca-Cola Company in which Coast Bottlers Ltd Mombasa has 93% shareholding. Coast Bottlers Ltd Mombasa account for approximately 50% of the country’s Coca-Cola volume.

The Coast Bottlers Ltd Mombasa operates in more than 200 countries and market nearly 500 brands and 3000 beverages products around the world. These products include sparkling (carbonated soft drinks) and still beverages such as water, juices and juices drinks, teas, coffee, sports drinks and energy drink. In Africa alone, they
operate in all territories in the continent. They are global business in each one of the
countries in which they operate they employ local people, source local ingredients and
produce and sell our products locally thereby directly or indirectly creating millions of
jobs, investments and economic opportunities

Figure 1.1 Organization Structure of Coast Bottlers Ltd Mombasa

Source: Coast Bottlers Ltd Mombasa (2016)

1.2 Statement of the Problem
For a long period, organizations were able to implement quality and effective
packaging of products. Quality Function Deployment is a crucial activity for
achievement of the set objectives, improvement of sales performance being one of
them. However Coast Bottlers Ltd Mombasa had their expectations in enhancing
efficient and increased productivity, reducing damages of products transportation of
products and consumer satisfaction.
The damages of products especially in transportation, Quality Function Deployment spaces are some of challenges facing organizations now leading to a lot of loss. It is therefore up to the organizations to know how to protect their products from damages, minimize the Quality Function Deployment space and how to satisfy their customers. The top management in organization should be the ones to be in front in training their employees on how to enhance efficient Quality Function Deployment in an organization. Hence the study sought to evaluate the effects of cost, quality, lead time and customer service on Quality Function Deployment in an organization.

1.3 Objectives of the Study

1.3.1 General Objective
The main focus of this study was to evaluate the effects of Quality Function Deployment in Coast Bottlers Ltd organization.

1.3.2 Specific Objectives
The following were the specific objectives of the study:-
 i. To determine the effect of cost on quality function deployment on organization.
 ii. To find out the effect of quality on quality function deployment on organization.
 iii. To establish the effect of lead time on quality function deployment on organization.
 iv. To analyze the effect customer service on quality function deployment on organization.

1.4 Research Questions
 i. What is the effect of cost on quality function deployment on organization?
 ii. How does quality affect quality function deployment on organization?
 iii. To what extent does lead time affect quality function deployment on organization?
 iv. What is the effect of customer service on quality function deployment on organization?
1.5 Significance of the Study
This study stands to be beneficial to a number of parties involved directly and or indirectly. That is; the researcher, the organization of research, future researchers and the Management University of Africa.

1.5.1 Management of Coast Bottlers Ltd Mombasa
The findings of the study will assist top management Coast Bottlers Ltd Mombasa to be able to understand the importance of implementing the voice of the customer hence concentrating on the customer requirements thus spending less time on redesign and modifications hence leading to high production.

1.5.2 Other Researchers
Researchers will benefit by finding ready information on the evaluation of effects of quality function deployment on organization. Also the study would help them to undertake further research to provide more information on the evaluation of effects of quality function deployment on organization.

1.6 Limitation of the Study

1.6.1 Confidentiality
Some respondents were reluctant to give some information for fear that the information could end up in the hands of management and this might lost them their jobs. To overcome this, researcher persuaded them by assuring them that the information would be treated with confidentiality. She used the letter of introduction from The Management University of Africa as a proof that the study was for academic purposes only.

1.6.1 Inaccessibility of Significant Information
The respondents restrained from providing some confident and crucial information with the fear of intimidation. Besides that, some of the crucial information needed was acquired incomplete but to a little extent. The researcher overcame this by constructing convenient data collection instruments that was able to capture valid and reliable data for analysis. The researcher also employed use of interpersonal skills in order to source in depth more and vital information.
1.6.2 Lack of Cooperation by the Respondents
Sometimes respondents chose not to cooperate with the researcher hence causing inconvenience in the research study process. Since it is the right of the respondents to cooperate or even abandoning his/her role in the process. Therefore the researcher opted to seek some new respondents which became extra resource consuming process. The researcher also developed a harmony relationship with the respondents in order to avert the element of poor cooperation.

1.7 Scope of the Study
The study concentrated on the effects of Quality function deployment on organization. The researcher studied the topic at hand on the Mombasa Coastal Bottlers Ltd located in Mtwapa. The study took four (4) months for completion, from August 2016 to November 2016.

1.8 Summary
This chapter contained the background of the study from it was concluded that cost, lead time, customer service and quality affect the quality function deployment in an organization. The researcher found out that the research will benefit the Management of Coast Bottlers Ltd Mombasa to be able to understand the importance of implementing the voice of the customer hence concentrating on the customer requirements thus spending less time on redesign and modifications hence leading to high production. Cost, lead time, customer service and quality were seen as the factors affecting quality function deployment in an organization and confidentiality, inaccessibility of significant information and lack of cooperation by the respondents were seen as challenges to successful research undertakings.
2.1 Introduction
This chapter reviews the various past studies that has been carried out in relation to implementation of career management programs in public sector. The chapter presents the various literatures existing in the subject in terms of introduction, theoretical reviews, critical reviews, summary and conclusion.

2.2 Theoretical Review
The study relied on the agency theory and the systems theory. These theories are discussed in the sections that follow.

2.2.1 Crosby's Theory
Philip Crosby is another person credited with starting the TQM movement. He made the point, much like Deming, that if you spend money on quality, it is money that is well spent. Crosby based on four absolutes of quality management and his own list of fourteen steps to quality improvement. Crosby's four absolutes are: we define quality as adherence to requirements, prevention is the best way to ensure quality, zero defects (mistakes) is the performance standard for quality and quality is measured by the price of nonconformity.

2.2.2 Joseph Juran's Theory
Joseph Juran is responsible for what has become known as the "Quality Trilogy." The quality trilogy is made up of quality planning, quality improvement, and quality control. If a quality improvement project is to be successful, then all quality improvement actions must be carefully planned out and controlled. Juran believed there were ten steps to quality improvement. These steps are: an awareness of the opportunities and needs for improvement must be created, improvement goals must be determined; organization is required for reaching the goals, training needs to be provided, initialize projects, monitor progress, recognize performance, report on results, track achievement of improvements and repeat.

2.2.3 Ishikawa's Theory
Creator of the last theory, Dr. Kaoru Ishikawa is often known for his namesake diagram, but he also developed a theory of how companies should handle their quality improvement projects. Ishikawa takes a look at quality from a human standpoint. He
points out that there are seven basic tools for quality improvement. These tools are:
Pareto analysis - Pareto analysis helps to identify the big problems in a process, cause and effect diagrams - cause and effect diagrams help to get to the root cause of problems, stratification - stratification analyzes how the information that has been collected fits together, check sheets - check sheets look at how often a problem occurs, histograms - histograms monitor variation, scatter charts - scatter charts demonstrate relationships between a variety of factors, process control charts - a control chart helps to determine what variations to focus upon.

2.3 Empirical Review

2.3.1 Cost
There is an undisrupted strong need to harmonize planning, monitoring and implementation of quality function deployment into a uniform local fiscal regime aimed at rationalizing the allocation of centrally and locally generated funds for more sustainable support to a community development. The main direction of the reform, as also advocated by various recent studies (Wamvuno, 2008).

Costs set the floor for the price that the company can change for its products. The companies want to change a price that both cover all its cost for producing, distributing and selling the products and deliver a fare rate of return for its effort and quality function deployment. A pricing strategy in many hospitality industries works to become “low cost procedure” in their industry. Quality Function Deployment organizations with lower cost can set lower prices that result in greater sales and profit. He further found out that quality function deployment organizations’ cost takes two forms; fixed and variable. Fixed cost (also known as overheads) is the cost that does not vary with the population or sales level. Variable costs vary directly with the level of production. Total costs are sum of the fixed and variable costs for any given level of production. Management wants to change a price that will at least cover the total production of a given level of production (Gitman, 2006).

According to the annual training survey report found evidence of continuing short-term and focus on immediate operational issues rather than proactive long-term view of training as an investment. Despite the intention of employers to increase training budgets in order to up skill the workforce although, the organizations were aware of
changing skills requirements. Short-term and focus on immediate operational issues rather than proactive long-term view of training as an investment. This means that employer is required to budget for employees training to equip them with current job skills (UK, 2005).

In quality function deployment organizations, accounting, costs, monetary value of expenditures for supplies, services, labour, products, equipment and other items purchased for use by a business or other accounting entity is very important. However, effective accounting and cost effective management of the organization resources does not mean that effective implementation of procurement process is also being delivered (Baumol, 2008).

It has been stated that when developing a business plan for a new company, product, or project, planners typically make cost estimates in order to assess whether revenues/benefits will cover costs. This is done in both businesses and government. However, costs are often underestimated resulting in cost overrun during implementation of operational policies. Again this may also affect the quality function deployment. Eventually customer may not feel appreciated and choose to leave the supplier (Baumol, 2008).

In fact, the main reason behind the failure of a company is the lack of the proper management of costs and revenue and relations as to how they affect quality function deployment. Management needs to see lots of stuff to increase the profit. Proper management is required to maintain the marketing, accounting and sales department of the company. Top management should always requiring seeing which team is working fine and they also need to know how they are working. This way they can get the clear idea, and then they will need to promote the person who is working well for your company. Along with the same the management needs to become strict to those employees who does not take their responsibilities properly and indirectly promote others too to work in the same manner (Kirzner, 2009).

In order to solve that, it has been identified that the main causes of cost underestimation and overrun are optimism bias and strategic misrepresentation. Reference class forecasting should therefore be developed to curb optimism bias and strategic misrepresentation and arrive at more accurate cost estimates. This is whether
the business is producing a product or a service. In producing a finished product, each industry faces its own unique challenge when reducing overhead. This also should be looked at as it affects quality function deployment (Baumol, 2008).

The most important aspect of a business is its marketing and sales department. The quality function deployment organizations should emphasize on these two departments for profit. The marketing team has the responsibility to generate prospects for the company while the sales department has the responsibility to convert those prospects into the clients of the company. However, these two departments are not only the ones important in budgetary control. Now consider a scenario in which one of the team of your company is working fine, while the other one is taking the situation for granted, in this case the company will never be able to achieve customer goals (Kirzner, 2009).

Strong indicates strong evidence on effectiveness and profitability of training is very limited. Provision of such evidence is not helped if quality function deployment fails to provide a clear indication of the full cost of training provision. Another way of looking at training provision is in terms of training provided. The survey results indicate a very similar picture to last year, with a mean number of training over employees recorded by the respondents. There are variations between sectors, with public sector providing days against in the private sector and only in the non-governmental non-profit sector. Again, we need to be very cautious about interpreting these figures about interpreting these figures to generalize about that small firms-i.e. those with less than 100 employees-haves the highest mean days of training (Collier, 2003).

Costs are the expenses which are related to the operational of a business, or the operational of a device, component and a piece of equipment or facility. If the order quantity is less the cost of order quantity will be more but the inventory carrying cost will be less. On the other hand if the order quantity is more the ordering will be less but the carrying cost will be more. Total cost curve presents the some of the ordering cost and carrying cost for each order size. Cost planning control and parts were developed circumstances where the organization found it difficulty in maintaining lead time. The earlier focus was therefore scheduling and continually allocating resources to meet deadlines while this task remain important cost control and resource
management now receives equal attention. This change reflects the change grounds for letting many projects contracts to help reduce the risks in quality function deployment (Naylor, 2002).

The scope duration and the price and contract are negotiable with effect with each change. in major projects there are many projects in these order for instance during the construction of the channel tunnel the British and the French government charges the regulation and the terms of the operational license in response to new concern over fire risk. Often it’s said that the key expiates in the management of the key expiates in the management of fixed price contract lies in the negotiation of profitable change orders. Given the difficulties in both forms of contract it is not sprucing that many highbrows exist. For instance under a fixed price contract a supplier may be protected from the inflation or exchange rate risk by agreed adjustment method for effective quality function deployment. In another case a cost plus contract may include estimate of time and cost with an incentive to beat certain target in exchange the supplier must provide information on detailed internal cost and agreed to auditing and arbitration in disputes (Maul, 2006).

Costs are also used in selection of those project based on risk and expected return that he best use of a company’s resources, this function is also known as the capital budgeting functions, they are also used in the management of company cash flow and balancing the ratio of debt and equity financing to maximize company value, which is also known as the, financial management function. The costs are also used in developing company governance’s structure to encourage ethical behavioral and actions not serve the best interest of its stake holders, also known as the corporate governance function, and finally the costs are also used in management of quality function deployment. This function is also known as the risk management function (Kotler, 2006).

Whatever the criterion cost is an important element in the decision making process however litigation need to be made between the cost for accounting purpose and the cost for management decision making. Financial accounting has a basic objective of fulfilling the performance of large quality function deployment organizations in terms of the profit and losses incurred by the company being made public which is quite different from costing for internal decision making although cost accounting fills
much of the letter required it is still not totally decision oriented. Every decision is made in the context of the circumstance which are unique to that decision when the context of the decision vary the type of the cost to be considered will also vary. This give rise to the term relevant cost what is relevant in one situation at one pound of time will not be relevant to another kind of decision at another point of time. This is the definition when the relevant cost makes the other cost methods infect the concept of relevant cost is very simple (Chary, 2004).

Costing cannot be exact science as many buyers who negotiate cost based price perhaps with a cost analysis sitting in with them becomes aware. A part from the variable cost which vary differently and un proportionally with quantity produced which includes a contribution to over heads and profit sales revenue in the long term to cover the full cost of staying in business including the profit if the seller is to survive even though in the short term that is short of work may accept. Price which so not makes all full contribution to overheads and profits orders to keep people and plant bus. There are other reasons why some products may be sold in at loss for instance to clear stock to price out competitors to gain a freehold in the new market but in general prices must cover the profit and overheads. Overheads are the fixed cost which a firm incurs to stay in the business and which are fixed in the since that they do not vary directly with output like rent rates salaries of senior executive. On the problem is how to allocate overheads when the quantity to be produced is not known accurately. Risk of quality function deployment is high during evaluation phase and can also occur even before contracting process. Examples of some of the main risks identified are, decision of contracting does not follow a regulation rational, technologies are made to favor special supplier or contractor, avoiding open bidding process instead use single sourcing; the bidding is not publicized hence limiting the number of participants, tenders are given shorter time to present their offers which affects the quality function deployment (Barley, 2005).

The study indicates that the current county government in Kenya provides an adequate basis for moving forward as county governments are generally of an adequate size and have sufficient administrative capacity to operate under county government jurisdiction and are generally able to assure the quality function deployment. The facilitative role regional administrative secretaries are appropriate
and seemingly allowing county government greater control over their own affairs, while still maintains their oversight and supervisory responsibilities (Kamunge, 2008).

2.3.2 Quality
According to Juran (2006), quality is fitness for use. The definition implies quality of design, quality conformance, availability and adequate field service. There is however no universal definition of quality frequently is defined as "fitness, merit and excellent'. This is the definition most people have in mind when they think of quality. The rolls rice is taken for granted to be a quality conformance. The diamond is accepted without question to a quality gem. People generally belief the high is something desirable by itself. The best quality is that which can be purchased at the lowest cost possible to fulfill or satisfy the intended function for which the product is being purchased. This will help to increase company operations with non-core functions under the management of a third party, the consortium for purchasing and Exportation research asserts that the outsourcing gives 100m for companies to manage efficient production system and improve the quality function deployment organizations to increase competitiveness of the market place.

According to Peter (2007), organizations practicing Total Quality Management Principle create a customer focused management system and company culture that seeks to meet their customers' needs the first time and every time. Effective organization analyses their customers' needs, wants and expectations, translate them into technical specific and organize their key business operations accordingly. This organization ensure that their leadership creates and implements strategic plans that focuses on what is important to their customers and market hence effective. These alternative definitions of quality often overlap and may conflict. Perspective for quality may also change as product moves from the design to the marketing stage for these reasons; it essential to consider each of the above properties when framing an overall quality philosophy. According to Gardins eight dimensions, quality is performance of the products operating characteristics. Reliability, the probability of a product surviving for a specified period of time under stated conditions of use to improve the effectiveness of quality function deployment organizations.
There are three views for describing the overall quality of a product. First is the view of the manufacturer, who is primarily concerned with the design, engineering and manufacturing process, involved in fabricating the product. Quality is measured by the degree of conformance to predetermined specifications and standards can lead to poor quality and low reliability. Efforts for quality improvement are aimed at eliminating defects (components and subsystems that are out of conformance), the need for scrap and rework, and hence overall reductions in production costs. Second is the view of the customer or user. To consumers, a high quality is one that well satisfies their preferences and expectations. This consideration can include a number of characteristics, some of which contribute little or nothing to the functionality of the product but are significant in providing customer satisfaction. A third view relating to quality is to consider the product itself as a system and to incorporate those characteristics that pertain directly to the operation and functionality of the product. This approach should include overlap of the manufacturer and customer views (Marconi, 2000).

Quality control is the collection of methods and techniques for ensuring that a product or service is produced and delivered according to given requirements. This includes the development of specifications and standards, performance measures, and tracking procedures, and corrective actions to maintain control. The data collection and analysis functions for quality control involve statistical sampling, estimation of parameters, and construction of various control charts for monitoring the processes in making products. This area of quality control is formally known as statistical process control (SPC) and along with acceptance sampling, represents the traditional perception of quality management. Statistical process control focuses primarily on the conformance element of quality, and to somewhat less extent on operating performance and durability. Due to all these processes involved in making a quality product, it therefore makes it little much more expensive than the poor products (David, 2008).

According to Peter (2007), organizations practicing Total Quality Management Principle create a customer focused management system and company culture that seeks to meet their customers' needs the first time and every time. Effective organization analyses their customers' needs, wants and expectations, translate them into technical specific and organize their key business operations accordingly. This
organization ensure that their leadership creates and implements strategic plans that focuses on what is important to their customers and market hence effective. Quality control entails all activities and decisions aimed at taking the organizations products and services to the desired quality level and maintaining that level. Quality control therefore requires intensive consultation and sound tuning between the various departments in the organization and with the outside suppliers and customers. After the desired quality level has been established, the complete production process must be organized in such a way that this level of quality is reached and maintained in a controllable manner for successful improvement of quality function deployment organizations.

According to Peter (2007), organizations practicing Total Quality Management Principle create a customer focused management system and company culture that seeks to meet their customers' needs the first time and every time. Effective organization analyses their customers' needs, wants and expectations, translate them into technical specific and organize their key business operations accordingly. This organization ensure that their leadership creates and implements strategic plans that focuses on what is important to their customers and market hence effective. These alternative definitions of quality often overlap and may conflict. Perspective for quality may also change as product moves from the design to the marketing stage for these reasons; it essential to consider each of the above properties when framing an overall quality philosophy. According to Gardins eight dimensions, quality is performance of the products operating characteristics. Reliability, the probability of a product surviving for a specified period of time under stated conditions of use to improve the effectiveness of quality function deployment organizations.

According to Lysson (2006), it is important of procurement staff being knowledgeable about specifications. The primary purpose of procurement is to contribute to the profitability of an undertaking by obtaining the best quality products or services in terms of liters for the use at the least possible total cost. The critical role of purchasing function in (quality management was first stressed in the early work, of acclaimed-"quality gum". Based on their work, more recently theory in total quality management (TQM) acknowledged this criteria role by considering the type of buyer-supplier relations a key element of TQM and the quality function deployment organizations.
According to Saleemi (2008), there are methods of discovering customer; be a customer: Using the product or senders to acquire a firsthand experience as a customer, you must close the gap of service and customer expectations; this creates a desiring opportunities for your company to do better than your competitors and gain market share. You can only close the gap by understanding customers' needs. Communicate with customer: An organization should seek to understand every customer interaction with the company. Effective organization understands that this process begin when the customer first contacts the company and continues until the services has completed. They realize what business they are really in because they have asked that question from the point of view of the customer. The customer have helped them define their business include their personal strengths and weaknesses as well as what they need to do in the future in order to improve the quality in quality function deployment organizations.

According to Arnod (2005), quality control entails all activities and decisions aimed at taking the organizations products and services to the desired quality level and maintaining that level. Quality control therefore requires intensive consultation and sound tuning between the various departments in the organization and with the outside suppliers and customers. After the desired quality level has been established, the complete production process must be organized in such a way that this level of quality is reached and maintained in a controllable manner quantity assurance is an important criterion for supplier selection. Quality assurance concerns keeping up the methods and procedures of quality control, i.e. systematically checking that they are applied correctly. Internal company assessment of these issues is often called auditing external assessment is referred to as verification. An external assessment establishes the degree to which the methods or procedures used satisfy the conditions which have been recorded in national and international standards of quality function deployment organizations.

Crosby (2009), defines quality as the conformity to requirements net goodness. He also stresses that the definition of quality can never make any sense unless it is based on what the customer wants. That is a product is quality only when it conforms to the customers' requirements. When they say that quality inputs results in quality output then it follows that trained man power should be employed so to ensure that they produce the right quality at all times. Performance and efficiency is a key to satisfying
customer and remaining competitive requires creating a lean production' services system which has found to be extremely difficult both operationally and financially. Quality of products an organization should offer must satisfy the need of their customers, organizations practicing Total Quality Management Principle create a customer focused management system and company culture that seeks to meet their customers' needs the first time and every time. Effective organization analyses their customers' needs, wants and expectations, translate them into technical specific and organize their key business operations accordingly. This organization ensure that their leadership creates and implements strategic plans that focuses on what is important to their customers and market hence effective quality is required so as to serve the heart of the of the resulting purchase order and to establish the standard against which inspection test, and quality checks are modes to improve the quality function deployment organizations.

2.3.3 Lead Time
Lead time reduction makes use of cross-functional teams to shrink the time required to take a product from conception to market. The tool involves key decision-makers from each functional area at the beginning of the development process. Lead time reduction minimizes complexity, streamlines processes, and decreases run lengths. This allows the quality function deployment organizations to eliminate bottlenecks, decrease unproductive waiting time and reduce the carrying cost of inventory. In service operations, this tool speeds up work-flows and decision-making throughout the quality function deployment organizations. Eliminating unnecessary work and speeding up decision-making can decrease the time required to fill orders and can increase the predictability of response. Lead time reduction increases productivity and employee effectiveness, increases profit margins of products or services through lowering costs of production and inventory, better meet changing customer needs through shortened product development cycles (Lysons, 2006).

According Datta (2007), states that for supplies management to be effective it must have the lead time of its delivery and performance of large quality function deployment organizations of its goods to customers. This protects the quality function deployment organizations during time of market demands and emergencies time. Performance of large quality function deployment organizations planning of lead time
is very important since it provides the customers to detecting case of any problem. It also enhances better way of managing inventories that they are receiving. This gives better way of selecting the better way of selecting the best mode of transport to be used during the delivery. Lack of good lead time limits the success of the quality function deployment organizations in terms of inventory management leading to poor lead time of goods and services that leads to improper supply management.

Lead time is the length of time taken to obtain or supply requirements from the time a need is ascertained to the time the need is satisfied. In many practical situations it may be observed neither the consumption rate of material is constant throughout a period of time nor in designing an inventory control system, it is very important then to decide upon the level of service desired by management. The service level required for an item may set at 100 per cent if the items where at stock out world result in great expense due to production delays. Lead time has direct effect on performance of large quality function deployment organizations planning which links with the customer and the quality function deployment organizations. It stated that performance of large quality function deployment organizations serves as the central role in coordinating the flow of goods in the quality function deployment organizations with system modules that place the goods in the hands of a good customer. It provides basis of the integrating the manufacturing, planning one control system through the use of MRP from the firm to the field. This is because lead time is the time between the delivery of goods to the customer and the time the goods arrive to the quality function deployment organizations. If the lead time is long it may have an effect to the quality function deployment organizations since the customer may tend to find other ways to shorten the lead time. This in turn will tend to affect the inventory management policy of the quality function deployment organizations (Lysons, 2006).

In today's competitive business environment, companies try to provide customers with goods and services faster and cheaper than their competitors. Often the key is to have efficient integrated information system. According to Cheng (2003), increasing the efficiency of the information systems results in more efficient management of business processes. When a quality function deployment organizations’ information systems are not integrated costly inefficiencies can result. An enterprise resource planning (ERP) system can integrate a quality function deployment organizations’
operations by acting as a quality function deployment organizations -wide computing environment that includes a database that is shared by all functional areas. Improved procurement practices lead to fewer shortages and interruptions, and less rework and overtime. By minimizing rush jobs and parts shortages, less time is needed for expediting, material handling, extra setups, disruptions, and tracking split lots or jobs that have been set aside. Performance of large quality function deployment organizations supervisors have better visibility of required work and can adjust capacity or loads to meet schedules. Supervisors have more time for managing, directing and training people.

According to Touch (2006), lead time directly affects performance of large quality function deployment organizations planning which links with consumer and the quality function deployment organizations. It is stated that performance of large quality function deployment organizations queries the central role of coordinating the flow of goods in a quality function deployment organizations with the system modules that places the goods in the Hand of a good customer. It provides the basis of interacting with the manufacturing, planning and the control system through the use of MRP from the firm to the field. This is because lead time is the time between delivery of goods to the customers and the time the goods arrive in the quality function deployment organizations. If the lead time is long it may have an effect to the quality function deployment organizations since the customers may tend to find the other ways to shorten the lead time this in return going to affect the supply of goods. The time taken to get through the factory is greatly reduced thus enabling factories to engage in time based competition using speed. If the right amount of products is produced at time consumers effectiveness is enhanced. Set up times are typically reduced by applying common industrial engineering techniques to analyzing the set up process itself, often by workers themselves using a video camera leading to a reduction in changers of several hours.

According to Kumar (2010), the importance of time based competition is also beginning to be recognized as a source of competitive advantage short cycle time companies are more profitable than longer cycle time companies and exhibits new product success rates above their industry average thus demonstrating the short cycle time management pays dividends to the bottom lines. Times pressure more critical
and delay in the delivery of new product innovations can firms significant proportions of related new product innovations can cost firm significant proportions of related profits but focusing only on speed to market may miss the point. The real challenge maybe to create faster better and cheaper products not just to create products faster.

According to Cheng (2003), improved performance of large quality function deployment organizations practices lead to fewer shortages and interruptions, and less rework and overtime. By minimizing rush jobs and parts shortages, less time is needed for expediting, material handling, extra setups, disruptions, and tracking split lots or jobs that have been set aside. Production supervisors have better visibility of required work and can adjust capacity or loads to meet schedules. Supervisors have more time for managing, directing and training people. The time taken to get through the factory is greatly reduced thus enabling factories to engage in time based competition using speed. If the right amount of products is produced at time consumers effectiveness is enhanced. Set up times are typically reduced by applying common industrial engineering techniques to analyzing the set up process itself, often by workers themselves using a video camera leading to a reduction in changers of several hours.

Through performance of large quality function deployment organizations services lead time is improved. For instance, the third party shall communicate to the customer at the end of every working day. Oral communication should be confirmed in writing within 24 hours. As the factory or the warehouse is connected online, third party shall be responsible for the data entry in the system within one hour of material inflow and outflow from respective places. Third party ensures that online inventory records are updated by stock review timing of 12 hours, 15 hours and 18 hours at the head office. All this is achieved by the use of technology i.e. the use of EDI and internet for example companies like yahoo tie up with many manufacturers for supply of goods which are displayed on their web site. An example of online trading quality function deployment organizations is Amazon.com which is the world largest trading quality function deployment organizations’-commerce logistics system ensures that sellers, buyers and Quality function deployment service provider’s benefits on time delivery and improved communication. Touch (2006), found that lead time direct effect of performance of large quality function deployment organizations planning which links
with the customers and the quality function deployment organizations. He stated that performance of large quality function deployment organizations as the central role of coordinating the flow of goods in a quality function deployment organizations with the systems modules the place the goods in the hand of a good customer. It provide basis for interacting the manufacturing planning and control system through the use of MRP from the firm to the field. If the lead time is long it may have an effect to the quality function deployment organizations since the customers may tend to have to find the other ways to shorten the lead time.

Barry (2008), stated that for exporting product channel vary in the number of middle men involve. Some channels are shortening in terms of middle men involve: they are directly linked with the producers and customers while other share long and indirectly linked. The two through one or more middlemen, their performance of large quality function deployment organizations channel results into either long lead time or short lead time, classified into either producer’s customers where producers directly sell their products to customers like in many branches in the supply industry, found in different parts of the country. This sometimes happens in the cases of promotion or advertisement to support the quality function deployment organizations product and boost the quality function deployment organizations.

The amount of time that elapses between when a process starts and when it is completed. Lead time is examined closely in manufacturing, supply chain management and project management, as companies want to reduce the amount of time it takes to deliver products to the market. In business, lead time minimization is normally preferred. Lead time is broken into several components: pre-processing, processing and post processing. Pre-processing involves determining resource requirements and initiating the steps required to fill an order. Processing involves the actual manufacturing or creation of the order. Post processing involves delivery of products to the market. Companies look at each component and compare it against benchmarks to determine where slowdowns are occurring (Maltson, 2009).

2.2.4 Customer Service
Another complex dimension to the competitive trend in the Kenyan quality function deployment organization is the ease and rate at which products and services are duplicated in the industry. This trend fosters a scenario of continuous fight for
customers share and, an increasing need to build loyal customers through effective
customer’s service activities (Mendzela, 2009) put forward that loyal customers of
service organizations tend to stay longer with the preferred providers and generate
favorable word-of-mouth effect that may further benefit the preferred provider.
Further, the author indicates that retaining a customer becomes a priority for most
enterprises and there are compelling arguments for managers to carefully consider the
factor that might increase customer’s retention rate. In any case, the cost of creating a
new customer has been estimated to be five times the cost of retaining an existing
customer in quality function deployment organizations.

According to McDougall (2006), customer’s satisfaction holds the potential for
increasing an organization’s customer base, increasing the use of more volatile
customer mix and increasing the organization’s reputation. To achieve customer
satisfaction which is key and crucial to the survival of the organization, attention
needs to be focused on the lifestyle and needs of the customer. Indeed, customer
service is the provision of services to customers, before, during and after a purchase
that is essential in quality function deployment organizations.

Bitner (2003), defined customer service as a series of activities designed to enhance
the level of customer’s satisfaction where that product or service has met customer’s
expectation. Customer service varies by product, industry and customer. It however,
assume important dimension in service delivery and sales of product. This is because
service firms have to retain their customers and win new ones if they are to remain in
the market so as to improve the quality function deployment organizations.

Michel (2009), emphasized that superior customer service calls for fair treatment to
customers, and that would definitely help in service recovery evaluation. Unfair
treatment towards customers is attributed as a reason for service failure, and any
service recovery must consolidate confidence by doing justice to customers. The
authors further suggested that in any service recovery, negative emotions of the
customer, such as anger, anxiety, and hatred, have to be taken care of before any
solution to the problem is given. It is therefore important to treat customers as
individuals by acknowledging their specific requests.
Pham (2010), tried to show how customer satisfaction can be achieved by simply raising self-awareness of the customer. In a typical product/service failure case, increased self-awareness of customers could increase their satisfaction with the service provider, as greater self-awareness would help customers accept greater responsibility for the failure. The reverse would happen if the product or service achieves success; in this case, if their level of self-awareness is increased, then a decrease in satisfaction with the service provider occurs as the customers are more likely to take credit for the success of large quality function deployment organizations.

Sangareddy (2009), examined how the complaint management process can impact customers’ intention to continue or discontinue using a given technology. They suggested that the complaint management process is neither simply a customer service issue, nor limited to customer service personnel; it also has to do with the overall policies governing the customer service function. For example, Dell’s policy of not limiting the time that junior technical support personnel spent in resolving customer complaints (instead of referring to senior personnel) had impact on customers' satisfaction. Moreover, encouraging customer participation and feedback while addressing their concerns can lead to innovative practices within the company. For instance, Cingular involves its customers in its usability lab and leverages its interactions with them to design better mobile phone services. They proposed that a good complaint management process can not only improve customer satisfaction, but can also help leverage customers’ input to design better offerings.

Indeed customer service is the ability to identify the needs of customers and meeting those needs beyond their expectation within the shortest possible time. In this light the focus of marketing is to address the customers’ needs, wants, preference and attitudes. Arguably, marketing concepts posit that the right avenue to start the search for new products ideas are the customers’ needs and wants (Kotler, 2001). Indeed, the success of any organization depends largely on the extent to which that organization could integrate its knowledge about the customers’ needs, wants and preference with its own creative capacity and skills. Consequently, competitive edge is secured through intelligent identification and satisfaction of customers needs better and sooner than competitors and sustenance of customer’s satisfaction through better customer service.
tools in quality function deployment organizations. Nowadays, more companies are recognizing the importance of satisfying and retaining customers. Satisfied customers constitute the company’s relationship capital. If the company were to be sold, the acquiring company would have to pay not only for the plant and equipment and the brand name but also for the delivered customer base, namely the number and value of the customers who would do business with the new firm. This research therefore seeks to find out the importance of customer service in the quality function deployment organization.

Customer service and customer retention are very well-studied areas in marketing. There are several studies addressing issues related to customer service, customer retention, and the impact of customer service on customer retention. The following is a review of some selected articles in the field. Michel (2009), emphasized that superior customer service calls for fair treatment to customers, and that would definitely help in service recovery evaluation. Unfair treatment towards customers is attributed as a reason for service failure, and any service recovery must consolidate confidence by doing justice to customers. The authors further suggested that in any service recovery, negative emotions of the customer, such as anger, anxiety, and hatred, have to be taken care of before any solution to the problem is given. It is therefore important to treat customers as individuals by acknowledging their specific requests so as to assist in quality function deployment organizations.

Nobrega (2010), studied customer service in higher education institutions, in this context, they identified the central service as teaching. Ancillary services have two components - viz. complementary services (e.g. library services, snack services, and photocopying services), and supplementary services (e.g. computer laboratory services and information service). The main finding of the study was that central service (i.e. teaching) had the largest contribution to students’ retention in higher education institutions. Complementary and supplementary services also contributed in a balanced way.

2.4 Conceptual Framework
The framework below was adopted in the study to show the relationship between independent and dependent variables. The following variable has some relation
with the role of third-party logistics providers in performance of large manufacturing firms in Coast Bottlers Ltd Mombasa

Figure 2.1 Conceptual Framework

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Dependent Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Effects of Quality Function Deployment</td>
</tr>
<tr>
<td>Quality</td>
<td>Effects of Quality Function Deployment</td>
</tr>
<tr>
<td>Lead Time</td>
<td>Effects of Quality Function Deployment</td>
</tr>
<tr>
<td>Customer Service</td>
<td>Effects of Quality Function Deployment</td>
</tr>
</tbody>
</table>

Source: Author (2016)

2.4.1 Cost
Cost has a basic objective of fulfilling the Quality Function Deployment in terms of the profit and losses incurred by an organization being made public which is quite different from costing for internal decision making although cost accounting fills much of the letter required, it is still not totally decision oriented every decision is made in the context of the circumstance which are unique to that decision when the context of the decision vary the type of the cost to be considered will also vary.

2.4.2 Quality
Quality is an experience of the customer. Product quality perception comes from your design specifications and manufacture standards achieved. Service quality perception comes from your service process design and the customer contact impressions.

2.4.3 Lead Time
The time taken to get through the factory is greatly reduced thus enabling factories to engage in time based competition using speed. If the right amount of products is produced Quality Function Deployment function is enhanced.
2.4.4 Customer Service
Customer service is the act of taking care of the customer's needs by providing and delivering professional, helpful, high quality service and assistance before, during, and after the customer's requirements are met. Customer service is meeting the needs and desires of any customer.

2.5 Research Gap
According to Naylor (2002), costs are the expenses which are related to the operational of a business, or the operational of a device, component and a piece of equipment or facility. If the order quantity is less the cost of order quantity will be more but the inventory carrying cost will be less. On the other hand if the order quantity is more the ordering will be less but the carrying cost will be more. Total cost curve presents the some of the ordering cost and carrying cost for each order size. Cost planning control and parts were developed circumstances where the organization found it difficulty in maintaining lead time. The earlier focus was therefore scheduling and continually allocating resources to meet deadlines while this task remain important cost control and resource management now receives equal attention. This change reflects the change grounds for letting many projects contracts to help reduce the risks in performance of large manufacturing firm. This is very true but the author failed to indicate how cost affects Quality Function Deployment in an organization. Hence, a study was conducted to fill in the gaps.

According to Juran (2006), quality is fitness for use. The definition implies quality of design, quality conformance, availability and adequate field service. There is however no universal definition of quality frequently is defined as "fitness, merit and excellent'. This is the definition most people have in mind when they think of quality. The rolls rice is taken for granted to be a quality conformance. The diamond is accepted without question to a quality gem. People generally belief the high is something desirable by itself. The best quality is that which can be purchased at the lowest cost possible to fulfill or satisfy the intended function for which the product is being purchased. This will help to increase company operations with non-core functions under the management of a third party, the consortium for purchasing and Exportation research asserts that the outsourcing gives 100m for companies to manage efficient production system and improve the quality function deployment
organizations to increase competitiveness of the market place. This very true but the author failed to indicate how quality affects Quality Function Deployment in an organization. Hence, a study was conducted to fill in the gaps.

According to Lysons (2006), lead time is the length of time taken to obtain or supply requirements from the time a need is ascertained to the time the need is satisfied. In many practical situations it may be observed neither the consumption rate of material is constant throughout a period of time nor in designing an inventory control system, it is very important then to decide upon the level of service desired by management. The service level required for an item may set at 100 per cent if the items where at stock out world result in great expense due to production delays. Lead time has direct effect on performance of large quality function deployment organizations planning which links with the customer and the quality function deployment organizations. It stated that performance of large quality function deployment organizations serves as the central role in coordinating the flow of goods in the quality function deployment organizations with system modules that place the goods in the hands of a good customer. It provides basis of the integrating the manufacturing, planning one control system through the use of MRP from the firm to the field. This is because lead time is the time between the delivery of goods to the customer and the time the goods arrive to the quality function deployment organizations. If the lead time is long it may have an effect to the quality function deployment organizations since the customer may tend to find other ways to shorten the lead time. This in turn will tend to affect the inventory management policy of the quality function deployment organizations. This is very true but the author failed to indicate how lead time affects Quality Function Deployment in an organization. Hence, a study was conducted to fill in the gaps.

Bitner (2003), defined customer service as a series of activities designed to enhance the level of customer’s satisfaction where that product or service has met customer’s expectation. Customer service varies by product, industry and customer. It however, assume important dimension in service delivery and sales of product. This is because service firms have to retain their customers and win new ones if they are to remain in the market so as to improve the quality function deployment organizations. This is very true but the author failed to indicate how customer service affects Quality Function Deployment in an organization. Hence, a study was conducted to fill in the gaps.
CHAPTER THREE
RESEARCH METHODOLOGY

3.1 Introduction
This chapter discusses the research methodology that was used to achieve the objectives set for this study. This included the research design, the target population sample size of the study, validity of sample, reliability, data collection instruments, data analysis technique.

3.2 Research Design
The study employed descriptive research that aimed at describing the role of Quality Function Deployment in Coast Bottlers Ltd Mombasa. According to Kraemer (2013), the purpose of case study research is to find out what situations, events, attitudes or opinions are occurring in a population. Case study research aimed at description asks simply about the distribution of some phenomena in a population or among subgroups of a population. The researcher's concern is simply to describe a distribution or to make comparisons between distributions. The design was therefore chosen to give a correct account, people opinion, beliefs and knowledge of role of Quality Function Deployment in Coast Bottlers Ltd Mombasa.

3.3 Target Population
Lyon (2015), defines target population as universal set of the study of all members of real ‘or hypothetical set of people, events or objects to which an investigator wishes to generalize the result. The target population of the study was mainly derived from the staff of Coast Bottlers Ltd Mombasa. The research used target population of 150 senior management, middle management and support staffs as indicated in table 3.1.

Table 3.1 Target Population

<table>
<thead>
<tr>
<th>Level of Management</th>
<th>Population Size</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior management</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Middle management</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Support staffs</td>
<td>137</td>
<td>91</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Coast Bottlers Ltd Mombasa (2016)
3.4 Sample and Sampling Technique
According to Mugenda & Mugenda (2012), sampling procedure refers to a systematic process of selecting individuals to represent the larger group from which they were selected. The researcher used stratified sampling approach to cover the total population. Writers have conducted research on the sample size to assist researchers in sampling design so that error might be reduced to reach higher level of confidence in the estimate. Kothari (2004), stated that a sample size of 30% to 40% might be considered. Hence this study used a sample of 50% of the entire population of the employees in the organization. From the target population of 150 individuals 50% yield a sample size of 75 respondents.

<table>
<thead>
<tr>
<th>Response</th>
<th>Target population</th>
<th>Sample Size</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Management</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Middle Management</td>
<td>10</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Support Staffs</td>
<td>137</td>
<td>68</td>
<td>91</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

3.5 Data Collection Procedure

3.5.1 Questionnaires
The main instruments for data collection in this research were through questionnaires. The researcher administered questionnaires to the managers and the staff in the study organization. The choice of questionnaires as a data collection tool was arrived at after a close and in-depth consideration of the research goals and the target group.

3.5.2 Reliability and Validity
Harper (2012) argues that for a questionnaire to produce useful results, it must have validity and reliability. If the questionnaire can actually test what it is intended for, it refers to validity, whereas, reliability measures the relevance. To test the reliability and validity of the questionnaire, a pretest was carried out. According to Connelly (2008), extant literature suggests that a pilot study sample should be 10% of the sample projected for the larger parent study. The questionnaire was administered to 6 respondents not in the study sample so as to establish whether the questionnaire measures what it purports to measure.
3.6 Data Analysis Methods

Primary data collected was coded and analyzed with the help of the Statistical Package for Social Sciences (SPSS). The analysis used descriptive statistics such as mean scores and standard deviations. Inferential statistic like correlation and regression analysis was carried out to establish the effects of procurement process on performance of county government. The results were presented using tables, graphs and charts for ease of understanding.
4.1 Introduction
In this chapter, the researcher carries out an analysis of data using both quantitative and qualitative methods. The analysis and interpretation of data is done by the help of analyzed tools such as graphs, pie charts and through judgment due to the observations made.

4.1 Presentation of Findings

4.1.1 Response Rate

Table 4.1 Response Rate

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>69</td>
<td>92</td>
</tr>
<tr>
<td>Non Response</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.1 Response Rate

Table 4.1 and figure 4.1 show the response rate of the respondents. The duly filled questionnaires were equivalent of 92% of the total questionnaires administered while
8% was composed of that which were not well filled. This indicates that this percentage was comprehensive enough to base the project on.

4.2.2 Gender Response

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>Female</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Table 4.2 and figure 4.2 indicate the gender response of the respondents. From the study findings majority of the respondents were male at 65% while 35% were female. This indicated that there were more male employees than females in Coast Bottlers Ltd Mombasa.
4.2.3 Age Brackets

Table 4.3 Age Brackets

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-27 years</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>28-37 years</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>38-47 years</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>58 years and above</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.3 Age Brackets

![Graph showing age distribution](image)

Source: Author (2016)

Table 4.3 and figure 4.3 show the age brackets of the respondents. Majority of the respondents at 33% were aged between 38-47 years, 28% were aged between 28-37 years, 22% were aged between 18-27 years and 17% were aged 48 years and above. From the analysis of findings it was concluded that majority of the respondents were aged between 38-47 years.
4.2 4 Highest Level of Education

Table 4.4 Highest Level of Education

<table>
<thead>
<tr>
<th>Highest Level of Education</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Level</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Secondary Level</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>Tertiary College</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>University Level</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Others (Specify)</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.4 Highest Level of Education

Source: Author (2016)

Table 4.4 and 4.4 figure indicate the education level of the respondents. Majority of the respondents at 35% had attained tertiary levels of education, 22% of the respondents had attained secondary levels of education, 19% had attained university levels of education, 14% had attained the primary levels of education while 10% of the respondents did not specify their levels of education. Based on the analysis of
findings it was concluded that majority of the respondents had attained tertiary levels of education.

4.2.5 Work Experience

Table 4.5 Work Experience

<table>
<thead>
<tr>
<th>Work Experience</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 years</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>6-10 years</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>11-15 years</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>Above 10 years</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.5 Work Experience

Table 4.5 and figure 4.5 show the work experiences of the respondents. 20% of the respondents had worked in the organization between 1-5 years, 39% had worked in the organization between 6-10 years, 29% had worked in the organization between 11-15 years while 12% had worked in the organization for 16 years and above. From
the study findings it was concluded that majority of the respondents had worked in the organization between 6-10 years.

4.2.6 Effects of Cost

Table 4.6 Effects of on quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>59</td>
<td>81</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Total 69 100

Source: Author (2016)

Figure 4.6 Effects of cost on quality function deployment on organization

Table 4.6 and figure 4.6 indicate the effects of cost on quality function deployment on organization. 85% of the respondents were of the opinions that cost affects quality function deployment while 15% were against. Based on the analysis of findings it was concluded that cost affects quality function deployment.
4.2.7 Rating of the Effects of Cost

Table 4.7 Rating of the effects of cost on quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>High</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>Moderate</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Low</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.7 Rating of the effects of cost on quality function deployment on organization

Source: Author (2016)

Table 4.7 and figure 4.7 indicate the extent to which cost affects on quality function deployment on organization. 36% of the respondents rated very high, 29% rated high, 20% rated moderate and 15% rated low. Based on the analysis of findings it was concluded that cost affects quality function deployment on organization.
4.2.8 Effects of Quality

Table 4.8 Effects of quality on quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>61</td>
<td>88</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.8 Effects of quality on quality function deployment on organization

Table 4.8 and figure 4.8 show the effects of quality on quality function deployment on organization. Majority of the respondents at 88% affirmed that quality affects on quality function deployment while 12% of the respondents were against. Based on the analysis of findings it was concluded that quality affects quality function deployment.
4.2.9 Rating of the Effects of Quality

Table 4.9 Rating of the effects of quality on quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>High</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Moderate</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Low</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.9 Rating of the effects of quality on quality function deployment on organization

Source: Author (2016)

Table 4.9 and figure 4.9 indicate the extent to which quality affect quality function deployment on organization. 35% of the respondents rated very high, 30% rated high, 23% rated moderate and 12% of the respondents rated low. Based on the analysis of findings it was concluded that quality affects quality function deployment on organization.
4.2.10 Effects of Lead Time

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Table 4.10 and figure 4.10 show the effects of lead time on quality function deployment on organization. Majority of the respondents at 80% agreed that lead time affects quality function deployment while 20% of the respondents disagreed. Based on the analysis of findings it was concluded that lead time affects quality function deployment.
4.2.11 Rating of the Effects of Lead Time

Table 4.11 Rating of the effects of lead time on quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>High</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>Moderate</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Low</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.11 Rating of the effects of lead time on quality function deployment on organization

Source: Author (2016)

Table 4.11 and figure 4.11 show the extent to which lead time affects financial quality function deployment on organization. 26% of the respondents rated very high, 41% rated high, 13% rated moderate while 20% of the respondents rated low. Based on the analysis of findings it was concluded that lead time affects quality function deployment.
4.2.12 Effects of Customer Service

Table 4.12 Effects of customer service on quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>57</td>
<td>83</td>
</tr>
<tr>
<td>No</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.12 Effects of customer service on quality function deployment on organization

Table 4.12 and figure 4.12 indicate the effects of customer service on quality function deployment on organization. Majority of the respondents at 83% were of the views that customer service affects quality function deployment while 17% of the respondents were against. Based on the study findings it was concluded that customer service affects quality function deployment.
4.2.13 Rating of the Effects of Customer Service

Table 4.13 Rating of the effects of customer service quality function deployment on organization

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>High</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Moderate</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Low</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Author (2016)

Figure 4.13 Rating of the effects of customer service quality function deployment on organization

Source: Author (2016)

Table 4.13 and figure 4.13 indicate the extent to which customer service affects quality function deployment on organization. Majority of the respondents at 41% rated very high, 28% rated high, 17% rated low and 14% of the respondents rated moderate. Based on the analysis of findings it was concluded that customer service affects quality function deployment.
4.3 Summary of Data Analysis
This data was derived from open ended questions it helped to establish patterns and relationship of information gathered in the study. It also helped get in-depth information on attitudes and reasons for certain actions or feelings of respondents.

4.3.1 General Information
Out of 75 questionnaires which were distributed only 69 of the respondents responded representing 92% of the total respondent who participated effectively and their analysis were included in the study. The remaining 6 respondents represented by 8% never returned the questionnaires for analysis and therefore were not included in the study. Based on the analysis 65% were male respondents against 35% who were female. In terms of age brackets, those aged between 18-27 were represented by 22%, those aged between 28-37 were represented by 28%, those aged between 38-47 were represented by 33%, while those aged 48 years and above were represented by 17%. Based on the analysis of findings it was clear that majority of the respondents were aged between 38-47 years. Under level of education majority of the respondents had attained tertiary levels of education represented by 35%, followed by respondent at 22% with secondary levels of education, 19% of the respondents had attained university levels of education, 14% had attained primary levels of education and finally 10% of the respondents did not specify their levels of education. In terms of work experience those who had worked in the organization between 1-5 years were represented by 20%, 6-10 years were represented by 39%, 11-15 were represented by 29% and those who had worked in the company for 16 years and above were represented by 12%. Based on the study findings it was concluded that majority of the respondents had worked in the organization between 6-10 years.

4.3.2 Cost
From the analysis of findings 85% of the respondents were of the opinions that cost affects quality function deployment while 15% were against. Based on the analysis of findings it was concluded that cost affects quality function deployment.

4.3.3 Quality
From the analysis of findings majority of the respondents at 88% affirmed that quality affects on quality function deployment while 12% of the respondents were against.
Based on the analysis of findings it was concluded that quality affects quality function deployment.

4.3.4 Lead Time
From the analysis of findings majority of the respondents at 80% agreed that lead time affects quality function deployment while 20% of the respondents disagreed. Based on the analysis of findings it was concluded that lead time affects quality function deployment.

4.3.5 Customer Service
From the analysis of findings majority of the respondents at 83% were of the views that customer service affects quality function deployment while 17% of the respondents were against. Based on the study findings it was concluded that customer service affects quality function deployment.
CHAPTER FIVE
SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATION

5.1 Introduction
This chapter focuses on the research questions driven from the study. It also summarizes the findings according to the research questions, concludes the study and recommendation. It also gives suggestions for further studies.

5.2 Summary of Findings

5.2.1 What is the effect of cost on quality function deployment on organization?
From the analysis of findings 36% of the respondents rated very high, 29% rated high, 20% rated moderate and 15% rated low. Based on the analysis of findings it was concluded that cost affects quality function deployment on organization.

5.2.2 How does quality affect quality function deployment on organization?
From the analysis of findings 35% of the respondents rated very high, 30% rated high, 23% rated moderate and 12% of the respondents rated low. Based on the analysis of findings it was concluded that quality affects quality function deployment on organization.

5.2.3 To what extent does lead time affect quality function deployment on organization?
From the analysis of findings 26% of the respondents rated very high, 41% rated high, 13% rated moderate while 20% of the respondents rated low. Based on the analysis of findings it was concluded that lead time affects quality function deployment.

5.2.4 What is the effect of customer service on quality function deployment on organization?
From the analysis of findings majority of the respondents at 41% rated very high, 28% rated high, 17% rated low and 14% of the respondents rated moderate. Based on the analysis of findings it was concluded that customer service affects quality function deployment.

5.3 Conclusions
The findings of the study conclude that costs are also used in selection of those project based on risk and expected return that he best use of a company’s resources,
this function is also known as the capital budgeting functions, they are also used in the management of company cash flow and balancing the ratio of debt and equity financing to maximize company value, which is also known as the, financial management function. The costs are also used in developing company governance’s structure to encourage ethical behavioral and actions not serve the best interest of its stake holders, also known as the corporate governance function, and finally the costs are also used in management of quality function deployment. This function is also known as the risk management function.

The findings of the study conclude that quality is measured by the degree of conformance to predetermined specifications and standards can lead to poor quality and low reliability. Efforts for quality improvement are aimed at eliminating defects (components and subsystems that are out of conformance), the need for scrap and rework, and hence overall reductions in production costs. Second is the view of the customer or user. To consumers, a high quality is one that well satisfies their preferences and expectations. This consideration can include a number of characteristics, some of which contribute little or nothing to the functionality of the product but are significant in providing customer satisfaction. A third view relating to quality is to consider the product itself as a system and to incorporate those characteristics that pertain directly to the operation and functionality of the product.

The findings of the study conclude lead time reduction makes use of cross-functional teams to shrink the time required to take a product from conception to market. The tool involves key decision-makers from each functional area at the beginning of the development process. Lead time reduction minimizes complexity, streamlines processes, and decreases run lengths. This allows the quality function deployment organizations to eliminate bottlenecks, decrease unproductive waiting time and reduce the carrying cost of inventory. In service operations, this tool speeds up work-flows and decision-making throughout the quality function deployment organizations. Eliminating unnecessary work and speeding up decision-making can decrease the time required to fill orders and can increase the predictability of response.

The findings of the study conclude that customer service and customer retention are very well-studied areas in marketing. There are several studies addressing issues related to customer service, customer retention, and the impact of customer service on
customer retention. The following is a review of some selected articles in the field. Superior customer service calls for fair treatment to customers, and that would definitely help in service recovery evaluation. Unfair treatment towards customers is attributed as a reason for service failure, and any service recovery must consolidate confidence by doing justice to customers. In any service recovery, negative emotions of the customer, such as anger, anxiety, and hatred, have to be taken care of before any solution to the problem is given.

5.4 Recommendations

5.4.1 Cost
The study recommends that cost should have a basic objective of fulfilling the performance of quality function deployment in terms of the profit and losses incurred by the company being made public which is quite different from costing for internal decision making although cost accounting fills much of the letter required it is still not totally decision oriented every decision is made in the context of the circumstance which are unique to that decision when the context of the decision vary the type of the cost to be considered will also vary. This give rise to the term relevant cost what is relevant in one situation at one pound of time will not be relevant to another kind of decision at another point of time. This is the definition when the relevant cost makes the other cost methods infect the concept of relevant cost is very simple.

5.4.2 Quality
The study recommends that trained man power should be employed so to ensure that they produce the right quality at all times. Performance and efficiency is a key to satisfying customer and remaining competitive requires creating a lean production' services system which has found to be extremely difficult both operationally and financially. Quality of products an organization should offer must satisfy the need of their customers, organizations practicing Total Quality Management Principle create a customer focused management system and company culture that seeks to meet their customers' needs the first time and every time. Effective organization analyses their customers' needs, wants and expectations, translate them into technical specific and organize their key business operations accordingly. This organization ensure that their leadership creates and implements strategic plans that focuses on what is important to their customers and market hence effective quality is required so as to serve the heart
of the resulting purchase order and to establish the standard against which inspection test, and quality checks are modes to improve the Quality Function Deployment.

5.4.3 Lead Time

The study recommends that for quality function deployment to be effective it must have the lead time of its delivery and performance of large quality function deployment organizations of its goods to customers. This protects the quality function deployment during time of market demands and emergencies time. Performance of large quality function deployment organizations planning of lead time is very important since it provides the customers to detecting case of any problem. It also enhances better way of managing inventories that they are receiving. This gives better way of selecting the better way of selecting the best mode of transport to be used during the delivery. Lack of good lead time limits the success of the quality function deployment organizations in terms of inventory management leading to poor lead time of goods and services that leads to improper supply management

5.4.4 Customer Service

The study recommends that customer satisfaction should be achieved by simply raising self-awareness of the customer. In a typical product/service failure case, increased self-awareness of customers could increase their satisfaction with the service provider, as greater self awareness would help customers accept greater responsibility for the failure. The reverse would happen if the product or service achieves success; in this case, if their level of self-awareness is increased, then a decrease in satisfaction with the service provider occurs as the customers are more likely to take credit for the success of large quality function deployment organizations.
5.5 Suggestion for Further Study
This study concentrated its efforts on an evaluation of effects of quality function deployment on organization; further studies could be done to establishing how quality function deployment has contributed to financial deepening in Kenya. This would allow generalization of findings to the whole Kenyan market. Further studies should be done on the impact of economic changes, stakeholders’ participation and management commitment on the quality function deployment.
REFERENCES
Bennie (2009), Strategic Management, 6th Edition, Jaico Publishing M.C. Grew Hill New York, USA
Cheng (2003), 'Supply Chain Management', 2nd Edition, Baba Barkha Nath Printers, India
Jane (2004), Supply Chain Management, 2nd Edition, Apprentice Hall New Dheli, India

APPENDIX I

QUESTIONNAIRE

The questionnaire is meant to collect information on evaluation of effects of quality function deployment on organization. Kindly answer the questions by writing a brief statement or ticking in the boxes provided as will be applicable. The information provided will be treated as strictly confidential and at no instance will your name be mentioned in this research. This research is intended for an academic purpose only.

SECTION 1: GENERAL INFORMATION

1. Gender
 Male { }
 Female { }

2. Age Brackets
 Between 18-27 { }
 Between 28-37 { }
 Between 38-47 { }
 48 years and above { }

3. Highest Level of Education
 Primary Level { }
 Secondary Level { }
 Tertiary Level { }
 University Level { }
 Others (Specify) { }

4. Work Experience
 1-5 year { }
 6-10 year { }
 11-15 years { }
 Over 16 years { }
SECTION 2: COST

5. Does cost affect quality function deployment on organization?

Yes { }
No { }

Briefly explain
..
..
..
..
..

6. How would you rate the effects of cost on quality function deployment on organization?

Very High { }
High { }
Moderate { }
Low { }

Briefly explain
..
..
..
..
..

SECTION 3: QUALITY

7. Does quality affect quality function deployment on organization?

Yes { }
No { }

Briefly explain
..
..
..
..
..

8. How do you rate the effects of quality on quality function deployment on organization?

Very High { }
High { }
Moderate { }
Low { }

Briefly explain
..
..
..
..
..

SECTION 4: LEAD TIME

9. Does lead time affect quality function deployment on organization?

Yes { }
No { }

Briefly explain
..
..
..
..
..

10. How do you rate the effects lead time on quality function deployment on organization?

Very High { }
High { }
Moderate { }
Low { }

Briefly explain
..
..
..
..
..

iii
SECTION 5: CUSTOMER SERVICE

11. Does customer service affect quality function deployment on organization?
 Yes { }
 No { }
 Briefly explain
 ..
 ..
 ..
 ..
 ..

12. How would you rate the effects of customer service on quality function deployment on organization?
 Very High { }
 High { }
 Moderate { }
 Low { }
 Briefly explain
 ..
 ..
 ..
 ..
 ..

Thank You for Your Cooperation